Prompted by an observation about the integral of exponential functions of the form $f(x)=\lambda e^{\alpha x}$, we investigate the possibility to exactly integrate families of functions generated from a given function by scaling or by affine transformations of the argument using nonlinear generalizations of quadrature formulae. The main result of this paper is that such formulae can be explicitly constructed for a wide class of functions, and have the same accuracy as Newton-Cotes formulae based on the same nodes.
翻译:根据对美元(x) ⁇ lambda e ⁇ äalpha x}表格指数函数整体的观察,我们调查了是否可能将某一函数产生的函数的组合完全结合成一个函数,其方法是用非线性等式公式对参数进行缩放或折线转换。本文的主要结果是,这种公式可以为广泛的功能类别明确构建,并具有与基于相同节点的牛顿-科特斯公式相同的精确度。