A paired dominating set $P$ is a dominating set with the additional property that $P$ has a perfect matching. While the maximum cardainality of a minimal dominating set in a graph $G$ is called the upper domination number of $G$, denoted by $\Gamma(G)$, the maximum cardinality of a minimal paired dominating set in $G$ is called the upper paired domination number of $G$, denoted by $\Gamma_{pr}(G)$. By Henning and Pradhan (2019), we know that $\Gamma_{pr}(G)\leq 2\Gamma(G)$ for any graph $G$ without isolated vertices. We focus on the graphs satisfying the equality $\Gamma_{pr}(G)= 2\Gamma(G)$. We give characterizations for two special graph classes: bipartite and unicyclic graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ by using the results of Ulatowski (2015). Besides, we study the graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ and a restricted girth. In this context, we provide two characterizations: one for graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ and girth at least 6 and the other for $C_3$-free cactus graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$. We also pose the characterization of the general case of $C_3$-free graphs with $\Gamma_{pr}(G)= 2\Gamma(G)$ as an open question.
翻译:配对的支配性设定 $P$ 是附加属性的支配性设置 $P$有一个完美的匹配。 虽然在图形$$中最小支配性设定的最大硬度为$G$的上限, 由$\Gamma( G) 表示, 以$G$表示的最小对齐支配性设定的最大基度是$G$, 由$G$表示的上对称支配性数量 $G$, 由$G3\\\ pr} (G) 表示的额外属性。 在 Henning 和 Prhan (2019) 中, 我们知道, 任何图形中最小的最小支配性设定值为$G$, 由$GG$表示, 以$G+G=$表示的上限。 我们给出两种特殊的图形级的定性: 以$( G) 平面和以$( G) 平面值表示( G) 平面表示( 以$) 平面表示( g) 平面和 6G$( G) 以2 G= G= 美元表示 。