Concept bottleneck models (CBMs) (Koh et al. 2020) are interpretable neural networks that first predict labels for human-interpretable concepts relevant to the prediction task, and then predict the final label based on the concept label predictions.We extend CBMs to interactive prediction settings where the model can query a human collaborator for the label to some concepts. We develop an interaction policy that, at prediction time, chooses which concepts to request a label for so as to maximally improve the final prediction. We demonstrate thata simple policy combining concept prediction uncertainty and influence of the concept on the final prediction achieves strong performance and outperforms a static approach proposed in Koh et al. (2020) as well as active feature acquisition methods proposed in the literature. We show that the interactiveCBM can achieve accuracy gains of 5-10% with only 5 interactions over competitive baselines on the Caltech-UCSDBirds, CheXpert and OAI datasets.
翻译:概念瓶颈模型(Koh等人,2020年)是可解释的神经网络,首先预测与预测任务有关的人类可解释概念的标签,然后根据概念标签预测最后标签。 我们将建立信任措施扩大到互动预测环境,使模型可以查询人类合作者为标签寻找一些概念。 我们制定互动政策,在预测时间选择哪些概念要求标签,以便最大限度地改进最后预测。 我们证明,将概念预测的不确定性和概念对最终预测的影响结合起来的简单政策,能够取得很强的绩效,超过Koh等人(2020年)提出的静态方法以及文献中提议的主动特征获取方法。 我们表明,互动建立信任措施能够取得5-10%的准确收益,只有5个在Caltech-UCSDBirds、CheXpert和审调处数据集的竞争性基线上进行互动。