Limbless locomotors, from microscopic worms to macroscopic snakes, traverse complex, heterogeneous natural environments typically using undulatory body wave propagation. Theoretical and robophysical models typically emphasize body kinematics and active neural/electronic control. However, we contend that because such approaches often neglect the role of passive, mechanically controlled processes (i.e., those involving mechanical intelligence), they fail to reproduce the performance of even the simplest organisms. To discover principles of how mechanical intelligence aids limbless locomotion in heterogeneous terradynamic regimes, here we conduct a comparative study of locomotion in a model of heterogeneous terrain (lattices of rigid posts). We use a model biological system, the highly studied nematode worm C. elegans, and a novel robophysical device whose bilateral actuator morphology models that of limbless organisms across scales. The robot's kinematics quantitatively reproduce the performance of the nematodes with purely open-loop control; mechanical intelligence simplifies control of obstacle navigation and exploitation by reducing the need for active sensing and feedback. An active behavior observed in C. elegans, undulatory wave reversal upon head collisions, robustifies locomotion via exploitation of the systems' mechanical intelligence. Our study provides insights into how neurally simple limbless organisms like nematodes can leverage mechanical intelligence via appropriately tuned bilateral actuation to locomote in complex environments. These principles likely apply to neurally more sophisticated organisms and also provide a new design and control paradigm for limbless robots for applications like search and rescue and planetary exploration.
翻译:无肢动物,从微小的蠕虫到巨大的蛇,通常使用波动体波传播来穿越复杂的异质自然环境。理论和机器人模型通常强调身体运动和主动神经/电子控制。然而,我们认为,因为这些方法往往忽略了机械智能的作用,它们无法再现甚至最简单的生物的性能。为了发现机械智能如何在异质性动态环境中帮助无肢动物运动的原则,我们在一个模型生物系统(广泛研究的线虫 C. elegans)和一个新颖的机器人设备中进行了运动比较研究。该机器人的双侧作动器形态模拟了各种规模的无肢动物。机器人的运动学以纯粹的开环控制量化地再现了线虫的性能;机械智能通过减少对主动感知和反馈的需求,简化了障碍物导航和利用的控制。C. elegans 中观察到的一个主动行为,即头部碰撞后的波动体反转,通过利用这个系统的机械智能,增强了运动的稳健性。我们的研究揭示了如何通过恰当调节双侧作动来利用机械智能,在复杂环境中运动的神经上简单的无肢动物如线虫。这些原则可能适用于神经更为复杂的生物,也为无肢机器人的设计和控制范式提供了新的设想,应用如搜救和行星探测。