Federated learning (FL) has emerged as a promising paradigm that trains machine learning (ML) models on clients' devices in a distributed manner without the need of transmitting clients' data to the FL server. In many applications of ML, the labels of training data need to be generated manually by human agents. In this paper, we study FL with crowdsourced data labeling where the local data of each participating client of FL are labeled manually by the client. We consider the strategic behavior of clients who may not make desired effort in their local data labeling and local model computation and may misreport their local models to the FL server. We characterize the performance bounds on the training loss as a function of clients' data labeling effort, local computation effort, and reported local models. We devise truthful incentive mechanisms which incentivize strategic clients to make truthful efforts and report true local models to the server. The truthful design exploits the non-trivial dependence of the training loss on clients' efforts and local models. Under the truthful mechanisms, we characterize the server's optimal local computation effort assignments. We evaluate the proposed FL algorithms with crowdsourced data labeling and the incentive mechanisms using experiments.


翻译:联邦学习(FL)已经成为一个很有希望的模式,在客户设备上以分布式方式培训机器学习模式,而不需要将客户的数据传送到FL服务器。在ML的许多应用中,培训数据标签需要由人力代理手工制作。在本文中,我们用众包数据标签研究FL, 将参与FL的每个客户的当地数据贴在客户手动的标签上。我们认为,客户在本地数据标签和本地模型计算方面可能没有做出预期努力,而且可能错误向FL服务器报告其本地模型的战略行为。我们把培训损失的性能界限定性为客户数据标签工作、当地计算工作以及报告的地方模型的功能。我们设计了真实的激励机制,鼓励战略客户做出真诚的努力并向服务器报告真正的本地模型。真实的设计利用培训损失对客户努力和本地模型的非三重依赖性依赖。在真实机制下,我们用众包数据标签和激励机制对服务器的最佳本地计算工作任务进行了描述。我们用众包数据标签和激励机制评估拟议的FL算法。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月24日
Arxiv
0+阅读 · 2023年3月22日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员