The increased availability of electronic health records (EHRs) have spearheaded the initiative for precision medicine using data driven approaches. Essential to this effort is the ability to identify patients with certain medical conditions of interest from simple queries on EHRs, or EHR-based phenotypes. Existing rule--based phenotyping approaches are extremely labor intensive. Instead, dimensionality reduction and latent factor estimation techniques from machine learning can be adapted for phenotype extraction with no (or minimal) human supervision. We propose to identify an easily interpretable latent space shared across various sources of EHR data as potential candidates for phenotypes. By incorporating multiple EHR data sources (e.g., diagnosis, medications, and lab reports) available in heterogeneous datatypes in a generalized \textit{Collective Matrix Factorization (CMF)}, our methods can generate rich phenotypes. Further, easy interpretability in phenotyping application requires sparse representations of the candidate phenotypes, for example each phenotype derived from patients' medication and diagnosis data should preferably be represented by handful of diagnosis and medications, ($5$--$10$ active components). We propose a constrained formulation of CMF for estimating sparse phenotypes. We demonstrate the efficacy of our model through an extensive empirical study on EHR data from Vanderbilt University Medical Center.
翻译:电子健康记录(EHRs)的增加是使用数据驱动方法进行精密医学倡议的先导。这一努力的关键在于能够从有关EHRs或基于EHR的苯型的简单查询中查明某些医疗条件值得关注的病人。现有的基于规则的眼科方法非常耗费人力。相反,机器学习的维度减少和潜在要素估计技术可以适用于没有(或最低限度)人类监督的苯型抽取。我们提议确定一种容易解释的隐蔽空间,由各种来源的EHR数据共享,作为可能选择的苯型数据对象。通过将多种EHR数据来源(例如诊断、药物和实验室报告)纳入一个通用的\textit{CIMF集成 }的多种数据类型中,我们的方法可以产生丰富的苯型。此外,在胸前应用中易于解释,需要对候选的苯型进行少许的医学描述,例如,从病人的药物和诊断数据类型中衍生出来的每一种型号,最好由我们精细的诊断和精细的EMFR 10 模型研究中,我们通过一种精密的精密的精密的C型研究,提出一个精细的精选的精选的精选的精选的精选的精选的精选的精选的精选方法。