We carry out a rigorous error analysis of the first-order semi-discrete (in time) consistent splitting scheme coupled with a generalized scalar auxiliary variable (GSAV) approach for the Navier-Stokes equations with no-slip boundary conditions. The scheme is linear, unconditionally stable, and only requires solving a sequence of Poisson type equations at each time step. By using the build-in unconditional stability of the GSAV approach, we derive optimal global (resp. local) in time error estimates in the two (resp. three) dimensional case for the velocity and pressure approximations.
翻译:我们对一级半分解(及时)一致的分拆计划进行了严格的错误分析,同时对纳维埃-斯托克斯方程式采用通用的标量辅助变量(GSAV)方法,加上无滑坡边界条件的无滑坡-斯托克斯方程式。这个方案是线性的,无条件稳定,只需要在每一步骤解决波瓦森式方程式的顺序。通过使用GSAV方法的无条件构建稳定性,我们从两个(重写三)维度的速率和压力近似中得出最佳的时差估计数。