Inferring programs which generate 2D and 3D shapes is important for reverse engineering, editing, and more. Training models to perform this task is complicated because paired (shape, program) data is not readily available for many domains, making exact supervised learning infeasible. However, it is possible to get paired data by compromising the accuracy of either the assigned program labels or the shape distribution. Wake-sleep methods use samples from a generative model of shape programs to approximate the distribution of real shapes. In self-training, shapes are passed through a recognition model, which predicts programs that are treated as pseudo-labels for those shapes. Related to these approaches, we introduce a novel self-training variant unique to program inference, where program pseudo-labels are paired with their executed output shapes, avoiding label mismatch at the cost of an approximate shape distribution. We propose to group these regimes under a single conceptual framework, where training is performed with maximum likelihood updates sourced from either Pseudo-Labels or an Approximate Distribution (PLAD). We evaluate these techniques on multiple 2D and 3D shape program inference domains. Compared with policy gradient reinforcement learning, we show that PLAD techniques infer more accurate shape programs and converge significantly faster. Finally, we propose to combine updates from different PLAD methods within the training of a single model, and find that this approach outperforms any individual technique.


翻译:生成 2D 和 3D 形状的程序推算程序对于反向工程、编辑和更多来说很重要。 执行这项任务的培训模型非常复杂, 因为配对( 配对、 程序) 数据对于许多域不容易提供, 使得严格监管的学习不可行。 但是, 有可能通过降低指定程序标签或形状分布的准确性来获得配对数据。 休眠方法使用一个形状方案的基因化模型样本来估计真实形状的分布。 在自我培训中, 形状通过一个识别模型传递, 预测这些形状被当作这些形状的假标签。 与这些方法相关, 我们引入了一种全新的自我培训变量变量变量变量, 用于程序推导出, 使程序与执行的输出输出形状形状配对, 避免标签不匹配, 以大致形状分布的成本计算。 我们提议将这些系统组合在一个单一的概念框架下, 以最有可能的模型更新方式进行培训, 来源于 Psedodo- Lables 或 Apirizal 配送( PLAD) 方法。 我们从多个 2D 和3D 升级 方案中评估这些技术, 以显著的更精确的升级方案, 在区域中, 比较 演示中, 演示中, 将我们学习一个更精确的比 和 比较 和 比较 的单个的单个的单个的升级方案。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
专知会员服务
56+阅读 · 2021年4月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
6+阅读 · 2019年11月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员