In complex orchard environments, the phenotypic heterogeneity of different apple leaf diseases, characterized by significant variation among lesions, poses a challenge to traditional multi-scale feature fusion methods. These methods only integrate multi-layer features extracted by convolutional neural networks (CNNs) and fail to adequately account for the relationships between local and global features. Therefore, this study proposes a multi-branch recognition framework named CNN-Transformer-CLIP (CT-CLIP). The framework synergistically employs a CNN to extract local lesion detail features and a Vision Transformer to capture global structural relationships. An Adaptive Feature Fusion Module (AFFM) then dynamically fuses these features, achieving optimal coupling of local and global information and effectively addressing the diversity in lesion morphology and distribution. Additionally, to mitigate interference from complex backgrounds and significantly enhance recognition accuracy under few-shot conditions, this study proposes a multimodal image-text learning approach. By leveraging pre-trained CLIP weights, it achieves deep alignment between visual features and disease semantic descriptions. Experimental results show that CT-CLIP achieves accuracies of 97.38% and 96.12% on a publicly available apple disease and a self-built dataset, outperforming several baseline methods. The proposed CT-CLIP demonstrates strong capabilities in recognizing agricultural diseases, significantly enhances identification accuracy under complex environmental conditions, provides an innovative and practical solution for automated disease recognition in agricultural applications.
翻译:暂无翻译