Given an initial resource allocation, where some agents may envy others or where a different distribution of resources might lead to higher social welfare, our goal is to improve the allocation without reassigning resources. We consider a sharing concept allowing resources being shared with social network neighbors of the resource owners. To this end, we introduce a formal model that allows a central authority to compute an optimal sharing between neighbors based on an initial allocation. Advocating this point of view, we focus on the most basic scenario where a resource may be shared by two neighbors in a social network and each agent can participate in a bounded number of sharings. We present algorithms for optimizing utilitarian and egalitarian social welfare of allocations and for reducing the number of envious agents. In particular, we examine the computational complexity with respect to several natural parameters. Furthermore, we study cases with restricted social network structures and, among others, devise polynomial-time algorithms in path- and tree-like (hierarchical) social networks.


翻译:鉴于最初的资源分配,一些代理人可能羡慕他人,或者不同的资源分配可能导致更高的社会福利,我们的目标是改善分配,而不重新分配资源。我们考虑一种共享概念,允许资源与资源所有者的社会网络邻居共享资源。为此,我们引入了一种正式模式,允许中央当局根据初步分配计算邻居之间的最佳共享。主张这一观点,我们侧重于一种最基本的情景,即资源可能由两个邻居在一个社会网络中共享,而每个代理人可以参与一定数量的共享。我们提出了优化分配的功利和平等的社会福利以及减少隐蔽代理人数目的算法。特别是,我们研究了几个自然参数的计算复杂性。此外,我们还研究了限制社会网络结构的案例,以及一些在路径和树类(等级的)社会网络中设计多时算法。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
专知会员服务
50+阅读 · 2020年12月14日
Effective.Modern.C++ 中英文版,334页pdf
专知会员服务
67+阅读 · 2020年11月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年2月16日
Arxiv
0+阅读 · 2022年2月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
保序最优传输:Order-preserving Optimal Transport
我爱读PAMI
6+阅读 · 2018年9月16日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员