The advent of data science has provided an increasing number of challenges with high data complexity. This paper addresses the challenge of space-time data where the spatial domain is not a planar surface, a sphere, or a linear network, but a generalized network (termed a graph with Euclidean edges). Additionally, data are repeatedly measured over different temporal instants. We provide new classes of nonseparable space-time stationary covariance functions where {\em space} can be a generalized network, a Euclidean tree, or a linear network, and where time can be linear or circular (seasonal). Because the construction principles are technical, we focus on illustrations that guide the reader through the construction of statistically interpretable examples. A simulation study demonstrates that we can recover the correct model when compared to misspecified models. In addition, our simulation studies show that we effectively recover simulation parameters. In our data analysis, we consider a traffic accident dataset that shows improved model performance based on covariance specifications and network-based metrics.
翻译:数据科学的出现带来了越来越多的数据复杂度很高的挑战。本文件讨论空间领域不是平面、球体或线性网络,而是通用网络(以欧几里德边缘为图表)的空间时间数据的挑战。此外,数据是在不同的时间瞬间反复测量的。我们提供了不可分离的空间-时间静止共变功能的新类别,在那里, ~ em 空间可以是一个通用的网络、 欧几里德树或线性网络, 时间可以是线性或循环性的( 季节性的) 。由于构建原则是技术性的, 我们侧重于通过构建统计解释性实例来指导读者的插图。 模拟研究表明,与错误描述模型相比,我们可以恢复正确的模型。 此外, 我们的模拟研究表明, 我们有效地恢复了模拟参数。 在数据分析中, 我们考虑建立一个交通事故数据集, 显示根据常识性规格和基于网络的衡量标准改进模型性能。