Recent data regulations necessitate machine unlearning (MU): The removal of the effect of specific examples from the model. While exact unlearning is possible by conducting a model retraining with the remaining data from scratch, its computational cost has led to the development of approximate but efficient unlearning schemes. Beyond data-centric MU solutions, we advance MU through a novel model-based viewpoint: sparsification via weight pruning. Our results in both theory and practice indicate that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner, closing the approximation gap, while continuing to be efficient. With this insight, we develop two new sparsity-aware unlearning meta-schemes, termed `prune first, then unlearn' and `sparsity-aware unlearning'. Extensive experiments show that our findings and proposals consistently benefit MU in various scenarios, including class-wise data scrubbing, random data scrubbing, and backdoor data forgetting. One highlight is the 77% unlearning efficacy gain of fine-tuning (one of the simplest approximate unlearning methods) in the proposed sparsity-aware unlearning paradigm. Codes are available at https://github.com/OPTML-Group/Unlearn-Sparse.
翻译:最近的数据法规要求进行机器反学习(MU):从模型中删除特定样本的效果。虽然可以通过从头开始使用剩余数据进行模型重新训练来进行精确的反学习,但其计算成本高昂,因此出现了近似但高效的反学习方案。除了数据中心的MU解决方案外,我们通过一种新型的基于模型的视角,即通过权重剪枝进行稀疏化,推动了MU。我们的理论和实践结果表明,模型稀疏性可以提高近似的反学习性能,缩小近似误差,同时仍然高效。基于这一发现,我们开发了两种新型的稀疏感知反学习元方案,称为“剪枝后再反学习”和“稀疏感知反学习”。广泛的实验表明,我们的发现和提议在各种情况下都有利于MU,包括类别数据洗刷,随机数据洗刷和后门数据遗忘。其中一个亮点是,在所提出的稀疏感知反学习范式下,微调(最简单的近似反学习方法之一)的反学习效能提高了77%。代码可在https://github.com/OPTML-Group/Unlearn-Sparse上获得。