Recent data regulations necessitate machine unlearning (MU): The removal of the effect of specific examples from the model. While exact unlearning is possible by conducting a model retraining with the remaining data from scratch, its computational cost has led to the development of approximate but efficient unlearning schemes. Beyond data-centric MU solutions, we advance MU through a novel model-based viewpoint: sparsification via weight pruning. Our results in both theory and practice indicate that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner, closing the approximation gap, while continuing to be efficient. With this insight, we develop two new sparsity-aware unlearning meta-schemes, termed `prune first, then unlearn' and `sparsity-aware unlearning'. Extensive experiments show that our findings and proposals consistently benefit MU in various scenarios, including class-wise data scrubbing, random data scrubbing, and backdoor data forgetting. One highlight is the 77% unlearning efficacy gain of fine-tuning (one of the simplest approximate unlearning methods) in the proposed sparsity-aware unlearning paradigm. Codes are available at https://github.com/OPTML-Group/Unlearn-Sparse.


翻译:最近的数据法规要求进行机器反学习(MU):从模型中删除特定样本的效果。虽然可以通过从头开始使用剩余数据进行模型重新训练来进行精确的反学习,但其计算成本高昂,因此出现了近似但高效的反学习方案。除了数据中心的MU解决方案外,我们通过一种新型的基于模型的视角,即通过权重剪枝进行稀疏化,推动了MU。我们的理论和实践结果表明,模型稀疏性可以提高近似的反学习性能,缩小近似误差,同时仍然高效。基于这一发现,我们开发了两种新型的稀疏感知反学习元方案,称为“剪枝后再反学习”和“稀疏感知反学习”。广泛的实验表明,我们的发现和提议在各种情况下都有利于MU,包括类别数据洗刷,随机数据洗刷和后门数据遗忘。其中一个亮点是,在所提出的稀疏感知反学习范式下,微调(最简单的近似反学习方法之一)的反学习效能提高了77%。代码可在https://github.com/OPTML-Group/Unlearn-Sparse上获得。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
相关论文
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
10+阅读 · 2021年11月10日
Arxiv
11+阅读 · 2020年12月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员