Particle track reconstruction is the most computationally intensive process in nuclear physics experiments. Traditional algorithms use a combinatorial approach that exhaustively tests track measurements ("hits") to identify those that form an actual particle trajectory. In this article, we describe the development of four machine learning (ML) models that assist the tracking algorithm by identifying valid track candidates from the measurements in drift chambers. Several types of machine learning models were tested, including: Convolutional Neural Networks (CNN), Multi-Layer Perceptrons (MLP), Extremely Randomized Trees (ERT) and Recurrent Neural Networks (RNN). As a result of this work, an MLP network classifier was implemented as part of the CLAS12 reconstruction software to provide the tracking code with recommended track candidates. The resulting software achieved accuracy of greater than 99\% and resulted in an end-to-end speedup of 35\% compared to existing algorithms.
翻译:粒子轨迹重建是核物理实验中最精密的计算过程。传统算法使用一种组合式方法,彻底测试测距(“轨迹 ” ) 来识别那些构成实际粒子轨迹的测量(“轨迹 ” ) 。在本篇文章中,我们描述了四个机器学习模型的开发情况,这些模型通过确定漂移室测量结果的有效轨迹候选者来帮助跟踪算法。测试了几种类型的机器学习模型,包括:进化神经网络(CNN)、多轨迹(MLP)、极随机化树(ERT)和常有神经网络(RNN) 。由于这项工作,作为CLAS12重建软件的一部分,实施了MLP网络分类器,向推荐的轨迹候选者提供跟踪代码。 由此产生的软件实现了99*以上的精确度,并导致与现有算法相比,端到端速度为35 ⁇ 。