Although robot-based automation in chemistry laboratories can accelerate the material development process, surveillance-free environments may lead to dangerous accidents primarily due to machine control errors. Object detection techniques can play vital roles in addressing these safety issues; however, state-of-the-art detectors, including single-shot detector (SSD) models, suffer from insufficient accuracy in environments involving complex and noisy scenes. With the aim of improving safety in a surveillance-free laboratory, we report a novel deep learning (DL)-based object detector, namely, DenseSSD. For the foremost and frequent problem of detecting vial positions, DenseSSD achieved a mean average precision (mAP) over 95% based on a complex dataset involving both empty and solution-filled vials, greatly exceeding those of conventional detectors; such high precision is critical to minimizing failure-induced accidents. Additionally, DenseSSD was observed to be highly insensitive to the environmental changes, maintaining its high precision under the variations of solution colors or testing view angles. The robustness of DenseSSD would allow the utilized equipment settings to be more flexible. This work demonstrates that DenseSSD is useful for enhancing safety in an automated material synthesis environment, and it can be extended to various applications where high detection accuracy and speed are both needed.
翻译:虽然化学实验室的机器人自动化可以加快材料开发过程,但无监视环境可能导致危险的事故,主要原因是机器控制错误。物体探测技术可以在解决这些安全问题方面发挥重要作用;然而,在涉及复杂和噪音场景的环境中,包括单发探测器(SSD)模型在内的最先进的探测器在涉及复杂和噪音场景的环境中的准确性不足。为了改善无监视实验室的安全性,我们报告了一个全新的深层次学习(DenseSSD)物体探测器,即DenseSSD。对于探测小瓶位置的最主要和常见的问题,DENSSD在涉及空瓶和溶瓶的复杂数据集的基础上达到了平均精确度超过95%。这项工作表明,DENSSD对于尽量减少故障引起的事故至关重要。此外,据认为,DenseSSSD对环境变化非常不敏感,在溶液颜色或测试角度的变化下保持高度精确性。DenseSSD的坚固度将使使用过的设备环境更加灵活。DenseSSD在使用各种材料的检测速度上都有助于提高自动化合成环境的安全性,因此,在各种材料探测速度方面,需要提高自动合成环境的安全性。