Hyperspectral image (HSI) classification has been a hot topic for decides, as hyperspectral images have rich spatial and spectral information and provide strong basis for distinguishing different land-cover objects. Benefiting from the development of deep learning technologies, deep learning based HSI classification methods have achieved promising performance. Recently, several neural architecture search (NAS) algorithms have been proposed for HSI classification, which further improve the accuracy of HSI classification to a new level. In this paper, NAS and Transformer are combined for handling HSI classification task for the first time. Compared with previous work, the proposed method has two main differences. First, we revisit the search spaces designed in previous HSI classification NAS methods and propose a novel hybrid search space, consisting of the space dominated cell and the spectrum dominated cell. Compared with search spaces proposed in previous works, the proposed hybrid search space is more aligned with the characteristic of HSI data, that is, HSIs have a relatively low spatial resolution and an extremely high spectral resolution. Second, to further improve the classification accuracy, we attempt to graft the emerging transformer module on the automatically designed convolutional neural network (CNN) to add global information to local region focused features learned by CNN. Experimental results on three public HSI datasets show that the proposed method achieves much better performance than comparison approaches, including manually designed network and NAS based HSI classification methods. Especially on the most recently captured dataset Houston University, overall accuracy is improved by nearly 6 percentage points. Code is available at: https://github.com/Cecilia-xue/HyT-NAS.


翻译:超光谱图像(HSI)分类是一个决定的热题,因为超光谱图像具有丰富的空间和光谱信息,为区分不同的土地覆盖物提供了坚实的基础。首先,我们从深层学习技术的开发中受益,深学习基于HSI的分类方法取得了令人乐观的绩效。最近,为HSI分类提出了几项神经结构搜索算法,进一步提高了HSI分类的准确性,从而进一步将HSI分类的准确性提高到一个新的水平。在本文件中,将NAS和变异器结合在一起,首次处理HSI分类任务。与以前的工作相比,拟议的方法有两个主要差异。首先,我们重新审视了以前HSI对NAS分类方法中设计的搜索空间,并提出了一个新的混合搜索空间,由空间占主导地位的单元格单元格和光谱系构成。 与以往工作中提议的搜索空间相比,拟议的混合搜索空间空间与HSI数据的特征更加一致,即HSI的空间分辨率相对较低,光谱解度极高。第二,为了进一步提高分类的精确性能,我们试图在HSI分类中自动设计的6-C级分类方法中,近为CO-C级总体数据进行比较。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员