Deep learning models rely heavily on large volumes of labeled data to achieve high performance. However, real-world datasets often contain noisy labels due to human error, ambiguity, or resource constraints during the annotation process. Instance-dependent label noise (IDN), where the probability of a label being corrupted depends on the input features, poses a significant challenge because it is more prevalent and harder to address than instance-independent noise. In this paper, we propose a novel hybrid framework that combines self-supervised learning using SimCLR with iterative pseudo-label refinement to mitigate the effects of IDN. The self-supervised pre-training phase enables the model to learn robust feature representations without relying on potentially noisy labels, establishing a noise-agnostic foundation. Subsequently, we employ an iterative training process with pseudo-label refinement, where confidently predicted samples are identified through a multistage approach and their labels are updated to improve label quality progressively. We evaluate our method on the CIFAR-10 and CIFAR-100 datasets augmented with synthetic instance-dependent noise at varying noise levels. Experimental results demonstrate that our approach significantly outperforms several state-of-the-art methods, particularly under high noise conditions, achieving notable improvements in classification accuracy and robustness. Our findings suggest that integrating self-supervised learning with iterative pseudo-label refinement offers an effective strategy for training deep neural networks on noisy datasets afflicted by instance-dependent label noise.
翻译:暂无翻译