We consider the problem of training User Verification (UV) models in federated setting, where each user has access to the data of only one class and user embeddings cannot be shared with the server or other users. To address this problem, we propose Federated User Verification (FedUV), a framework in which users jointly learn a set of vectors and maximize the correlation of their instance embeddings with a secret linear combination of those vectors. We show that choosing the linear combinations from the codewords of an error-correcting code allows users to collaboratively train the model without revealing their embedding vectors. We present the experimental results for user verification with voice, face, and handwriting data and show that FedUV is on par with existing approaches, while not sharing the embeddings with other users or the server.
翻译:我们考虑了在联合环境下培训用户核查模型的问题,因为每个用户只能访问一个类别的数据,用户嵌入器无法与服务器或其他用户共享。为了解决这一问题,我们提议采用联邦用户核查(FedUV)这一框架,让用户共同学习一组矢量,并最大限度地扩大其实例嵌入与这些矢量秘密线性组合的关联性。我们显示,从错误更正代码的编码词中选择线性组合,可以让用户在不披露嵌入矢量的情况下合作培训模型。我们用语音、面部和笔迹数据来展示用户核查实验结果,并显示FedUV与其他用户或服务器的嵌入器保持同步,同时不与其他用户或服务器共享嵌入。