In this work, we present a federated version of the state-of-the-art Neural Collaborative Filtering (NCF) approach for item recommendations. The system, named FedNCF, allows learning without requiring users to expose or transmit their raw data. Experimental validation shows that FedNCF achieves comparable recommendation quality to the original NCF system. Although federated learning (FL) enables learning without raw data transmission, recent attacks showed that FL alone does not eliminate privacy concerns. To overcome this challenge, we integrate a privacy-preserving enhancement with a secure aggregation scheme that satisfies the security requirements against an honest-but-curious (HBC) entity, without affecting the quality of the original model. Finally, we discuss the peculiarities observed in the application of FL in a collaborative filtering (CF) task as well as we evaluate the privacy-preserving mechanism in terms of computational cost.


翻译:在这项工作中,我们为项目建议提出了一个最新神经合作过滤(NCF)联合版本。这个名为FedNCF的系统允许在不要求用户披露或传输原始数据的情况下进行学习。实验性验证表明,FedNCF达到了与原NCF系统相似的建议质量。虽然Federal学习(FL)使学习无需原始数据传输,但最近的攻击表明,光是FL并不能消除隐私关切。为了克服这一挑战,我们把隐私保护增强与一个安全合并计划结合起来,这个计划既能满足对诚实但有争议(HBC)的实体的安全要求,又不影响原始模型的质量。最后,我们讨论了在合作过滤(CFC)任务中应用FL时观察到的特殊性,我们从计算成本的角度评价了隐私保护机制。

0
下载
关闭预览

相关内容

协同过滤(英语:Collaborative Filtering),简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人透过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的,特别不感兴趣信息的纪录也相当重要。协同过滤又可分为评比(rating)或者群体过滤(social filtering)。其后成为电子商务当中很重要的一环,即根据某顾客以往的购买行为以及从具有相似购买行为的顾客群的购买行为去推荐这个顾客其“可能喜欢的品项”,也就是借由社群的喜好提供个人化的信息、商品等的推荐服务。除了推荐之外,近年来也发展出数学运算让系统自动计算喜好的强弱进而去芜存菁使得过滤的内容更有依据,也许不是百分之百完全准确,但由于加入了强弱的评比让这个概念的应用更为广泛,除了电子商务之外尚有信息检索领域、网络个人影音柜、个人书架等的应用等。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
37+阅读 · 2020年11月24日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
149+阅读 · 2020年6月28日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
12+阅读 · 2021年5月3日
Arxiv
8+阅读 · 2019年5月20日
Arxiv
5+阅读 · 2018年7月19日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员