We propose a computationally efficient method to construct nonparametric, heteroscedastic prediction bands for uncertainty quantification, with or without any user-specified predictive model. Our approach provides an alternative to the now-standard conformal prediction for uncertainty quantification, with novel theoretical insights and computational advantages. The data-adaptive prediction band is universally applicable with minimal distributional assumptions, has strong non-asymptotic coverage properties, and is easy to implement using standard convex programs. Our approach can be viewed as a novel variance interpolation with confidence and further leverages techniques from semi-definite programming and sum-of-squares optimization. Theoretical and numerical performances for the proposed approach for uncertainty quantification are analyzed.
翻译:我们提出了一种计算效率高的方法,用以构建非参数性、不测的预测频带,以量化不确定性,无论是否使用用户指定的预测模型。我们的方法为目前标准的不确定性量化一致预测提供了一种替代方法,具有新的理论见解和计算优势。数据适应预测频带在最低分配假设下普遍适用,具有很强的非计量覆盖特性,并且很容易使用标准的Convex程序加以实施。我们的方法可以被视为一种具有信心的新的互换和进一步的杠杆技术,来自半确定性编程和方位总和的优化。对拟议的不确定性量化方法的理论和数字绩效进行了分析。