The rapid growth of streaming video applications demands multimodal models with enhanced capabilities for temporal dynamics understanding and complex reasoning. However, current Video Question Answering (VideoQA) datasets suffer from two critical limitations: 1) Static annotation mechanisms fail to capture the evolving nature of answers in temporal video streams, and 2) The absence of explicit reasoning process annotations restricts model interpretability and logical deduction capabilities. To address these challenges, We introduce StreamingCoT, the first dataset explicitly designed for temporally evolving reasoning in streaming VideoQA and multimodal Chain-of-Thought (CoT) tasks. Our framework first establishes a dynamic hierarchical annotation architecture that generates per-second dense descriptions and constructs temporally-dependent semantic segments through similarity fusion, paired with question-answer sets constrained by temporal evolution patterns. We further propose an explicit reasoning chain generation paradigm that extracts spatiotemporal objects via keyframe semantic alignment, derives object state transition-based reasoning paths using large language models, and ensures logical coherence through human-verified validation. This dataset establishes a foundation for advancing research in streaming video understanding, complex temporal reasoning, and multimodal inference. Our StreamingCoT and its construction toolkit can be accessed at https://github.com/Fleeting-hyh/StreamingCoT.
翻译:暂无翻译