Federated learning (FL) is an emerging technique that trains massive and geographically distributed edge data while maintaining privacy. However, FL has inherent challenges in terms of fairness and computational efficiency due to the rising heterogeneity of edges, and thus usually result in sub-optimal performance in recent state-of-the-art (SOTA) solutions. In this paper, we propose a Customized Federated Learning (CFL) system to eliminate FL heterogeneity from multiple dimensions. Specifically, CFL tailors personalized models from the specially designed global model for each client, jointly guided an online trained model-search helper and a novel aggregation algorithm. Extensive experiments demonstrate that CFL has full-stack advantages for both FL training and edge reasoning and significantly improves the SOTA performance w.r.t. model accuracy (up to 7.2% in the non-heterogeneous environment and up to 21.8% in the heterogeneous environment), efficiency, and FL fairness.


翻译:联邦学习(FL)是一种新兴技术,在维护隐私的同时,培训大规模和地理分布的边缘数据,但是,FL在公平性和计算效率方面有内在挑战,因为边缘的异质性正在上升,因此通常导致最近的最先进的(SOTA)解决方案表现不尽如人意。在本文中,我们建议采用自定义的联邦学习(CFL)系统,从多个层面消除FL的异质性。具体来说,CFL裁缝从专门为每个客户设计的全球模型中定制个性化模型,联合指导了一个经过在线培训的模型搜索助手和新颖的汇总算法。广泛的实验表明,CFL具有对FL培训和边缘推理的充分优势,大大改善了SOTA的性能(在非异质环境中达到7.2%,在多种环境达到21.8%)、效率和FL公平性模型的精确度。

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
10+阅读 · 2021年3月30日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员