In this paper, we propose to use the general $L^2$-based Sobolev norms (i.e., $H^s$ norms, $s\in \mathbb{R}$) to measure the data discrepancy due to noise in image processing tasks that are formulated as optimization problems. As opposed to a popular trend of developing regularization methods, we emphasize that an \textit{implicit} regularization effect can be achieved through the class of Sobolev norms as the data-fitting term. Specifically, we analyze that the implicit regularization comes from the weights that the $H^s$ norm imposes on different frequency contents of an underlying image. We also build the connections of such norms with the optimal transport-based metrics and the Sobolev gradient-based methods, leading to a better understanding of functional spaces/metrics and the optimization process involved in image processing. We use the fast Fourier transform to compute the $H^s$ norm efficiently and combine it with the total variation regularization in the framework of the alternating direction method of multipliers (ADMM). Numerical results in both denoising and deblurring support our theoretical findings.
翻译:在本文中,我们提议使用基于通用的2美元Sobolev规范(即,$H$规范,$s@mathbb{R}$)来衡量由于作为优化问题的图像处理任务中的噪音而产生的数据差异。相对于发展规范化方法的流行趋势,我们强调,可以通过Sobolev规范的等级(即适合数据的术语)实现常规化效果。具体地说,我们分析隐含的规范化来自美元规范对一个基本图像的不同频率内容施加的重量。我们还建立了此类规范与基于最佳运输的计量标准以及Sobolev梯度方法的联系,从而导致更好地了解功能空间/度量和图像处理过程中的优化过程。我们使用快速的四倍变来高效率地计算美元规范,并将它与乘数交替方向方法框架内的全面变异性规范化结合起来。在分解和淡化两方面的结果都支持了我们的理论结论。