In circumstellar disks, the size of dust particles varies from submicron to several centimeters, while planetesimals have sizes of hundreds of kilometers. Therefore, various regimes for the aerodynamic drag between solid bodies and gas can be realized in these disks, depending on the grain sizes and velocities: Epstein, Stokes, and Newton, as well as transitional regimes between them. For small bodies moving in the Epstein regime, the time required to establish the constant relative velocity between the gas and bodies can be much less than the dynamical time scale for the problem - the time for the rotation of the disk about the central body. In addition, the dust may be concentrated in individual regions of the disk, making it necessary to take into account the transfer of momentum between the dust and gas. It is shown that, for a system of equations for gas and monodisperse dust, a semi-implicit first-order approximation scheme in time in which the interphase interaction is calculated implicitly, while other forces, such as the pressure gradient and gravity are calculated explicitly, is suitable for stiff problems with intense interphase interactions and for computations of the drag in non-linear regimes. The piece-wise drag coefficient widely used in astrophysical simulations has a discontinuity at some values of the Mach and Knudsen numbers that are realized in a circumstellar disk. A continuous drag coefficient is presented, which corresponds to experimental dependences obtained for various drag regimes.


翻译:在环球磁盘中,灰尘粒子的大小从亚微微小到几厘米不等,而行星动物则有数百公里的大小。因此,根据颗粒大小和速度的不同,可以在这些磁盘中实现固体身体和气体之间空气动力阻力的各种制度:Epstein, Stokes, Newton, 以及它们之间的过渡制度。对于在Epstein制度中移动的小体体体来说,在气体和机体之间确定恒定相对速度所需的时间可能大大低于问题动态时间尺度—— 磁盘在中央体上旋转的时数。此外,灰尘可能集中在磁盘的各个区域,从而有必要考虑到灰尘和气体之间动力的转移。 事实证明,对于气体和单盘尘的等方程系统来说,一个半不精确的第一顺序的近似方法,在时间里可以以隐含的方式计算出气和机体之间的相互作用,而其他力量,如压力梯度和重力梯度等,可以明确计算出在中央体的磁盘上对硬质的硬度问题进行旋转的旋转,在磁盘中,在磁体间相互作用中可以广泛计算。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
162+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
196+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年11月20日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年11月20日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员