Allocating patients to treatment arms during a trial based on the observed responses accumulated prior to the decision point, and sequential adaptation of this allocation,, could minimize the expected number of failures or maximize total benefit to patients. In this study, we developed a Bayesian response adaptive randomization (RAR) design targeting the endpoint of organ support-free days (OSFD) for patients admitted to the intensive care units (ICU). The OSFD is a mixture of mortality and morbidity assessed by the number of days of free of organ support within a predetermined time-window post-randomization. In the past, researchers treated OSFD as an ordinal outcome variable where the lowest category is death. We propose a novel RAR design for a composite endpoint of mortality and morbidity, e.g., OSFD, by using a Bayesian mixture model with a Markov chain Monte Carlo sampling to estimate the posterior probability of OSFD and determine treatment allocation ratios at each interim. Simulations were conducted to compare the performance of our proposed design under various randomization rules and different alpha spending functions. The results show that our RAR design using Bayesian inference allocated more patients to the better performing arm(s) compared to other existing adaptive rules while assuring adequate power and type I error rate control for the across a range of plausible clinical scenarios.
翻译:根据在决定点之前积累的观察反应,在试验期间将病人分配到治疗武器,并按顺序调整这一分配,可以最大限度地减少预期的失败次数,或使病人获得最大利益。在本研究中,我们为进入特护单位的病人制定了针对无器官支持日终点的无器官支持日(OSFD)的巴伊西亚应对适应随机化(RAR)设计;OSFD是死亡率和发病率的混合体。OSFD是死亡率和发病率的混合体。OSFD是在预定的时间-窗口后随机化中根据无器官支持天数评估的。过去,研究人员将OSFD作为最低死亡类别的一种或非常规结果变量处理。我们提出了针对死亡率和发病率综合终点(例如OSFD)的新型RAR设计。我们采用了一种含有Markov 链 Monte Carlo抽样的巴伊西亚混合体混合体模型,以估计OSFD的后缘概率,并确定每次过渡期间的治疗分配比率。进行了模拟,以比较我们根据各种随机化规则和不同的阿尔法支出功能所拟议的设计的执行情况。结果表明,我们RARD设计了一种新的死亡率和临床测算法,同时将比了其他病人更精确测测算。