Completely randomized experiments have been the gold standard for drawing causal inference because they can balance all potential confounding on average. However, they may suffer from unbalanced covariates for realized treatment assignments. Rerandomization, a design that rerandomizes the treatment assignment until a prespecified covariate balance criterion is met, has recently got attention due to its easy implementation, improved covariate balance and more efficient inference. Researchers have then suggested to use the treatment assignments that minimize the covariate imbalance, namely the optimally balanced design. This has caused again the long-time controversy between two philosophies for designing experiments: randomization versus optimal and thus almost deterministic designs. Existing literature argued that rerandomization with overly balanced observed covariates can lead to highly imbalanced unobserved covariates, making it vulnerable to model misspecification. On the contrary, rerandomization with properly balanced covariates can provide robust inference for treatment effects while sacrificing some efficiency compared to the ideally optimal design. In this paper, we show it is possible that, by making the covariate imbalance diminishing at a proper rate as the sample size increases, rerandomization can achieve its ideally optimal precision that one can expect with perfectly balanced covariates, while still maintaining its robustness. We further investigate conditions on the number of covariates for achieving the desired optimality. Our results rely on a more delicate asymptotic analysis for rerandomization. The derived theory for rerandomization provides a deeper understanding of its large-sample property and can better guide its practical implementation. Furthermore, it also helps reconcile the controversy between randomized and optimal designs in an asymptotic sense.


翻译:完全随机的实验是得出因果关系推断的黄金标准, 因为它们可以平均平衡所有潜在的折叠。 但是, 它们可能会因为实现治疗任务时的偏差而遭受不平衡的共变差。 重新随机化是一种在事先指定的共变平衡标准达到之前重新重新调整治疗任务的设计, 最近因其容易实施而引起注意, 改进了共变平衡和更有效的推论。 研究人员随后建议使用尽可能减少共变不平衡的治疗任务, 即最佳的平衡设计。 这再次导致两个设计实验的哲学之间的长期争论: 随机化相对于最佳的, 因而几乎是确定性的设计。 现有文献认为, 过度平衡的共变差标准可以导致高度失衡的共变异性, 使得它很容易被模型误差。 相反, 以适当平衡的变异性进行重整, 与理想的精细度设计相比, 使某种效率降低。 在本文中, 我们可能通过更精确的变异性调整, 使一个更精确的正比值的正比值, 使得我们更精确的正变的精确性, 能够更精确地测量一个更精确的精确的变整。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月21日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员