We prove a new concentration inequality for U-statistics of order two for uniformly ergodic Markov chains. Working with bounded and $\pi$-canonical kernels, we show that we can recover the convergence rate of Arcones and Gin{\'e} who proved a concentration result for U-statistics of independent random variables and canonical kernels. Our result allows for a dependence of the kernels $h_{i,j}$ with the indexes in the sums, which prevents the use of standard blocking tools. Our proof relies on an inductive analysis where we use martingale techniques, uniform ergodicity, Nummelin splitting and Bernstein's type inequality. Assuming further that the Markov chain starts from its invariant distribution, we prove a Bernstein-type concentration inequality that provides sharper convergence rate for small variance terms.
翻译:我们证明,对于统一ERgodic Markov 链的二号单项的U-统计学来说,新一轮的集中不平等。我们用捆绑的和$$pion-canonical 内核来证明,我们可以恢复Arcones和Gin_e}的趋同率。Acones和Gin_e}的趋同率被证明是独立的随机变数和罐子内核的U-统计学的集中结果。我们的结果允许内核($h ⁇ i,j}$)与总和指数的依附关系,这阻止了标准的阻塞工具的使用。我们的证据依赖于一种感性分析,即我们使用马丁格尔技术、统一的兽性、Nummelin分裂和Bernstein的不平等类型。假设马尔科夫链从其变异分布开始,我们证明伯恩斯坦式的集中率不平等,为小差异术语提供了更鲜明的趋同率。