In this paper, we investigate a realistic but underexplored problem, called few-shot temporal knowledge graph reasoning, that aims to predict future facts for newly emerging entities based on extremely limited observations in evolving graphs. It offers practical value in applications that need to derive instant new knowledge about new entities in temporal knowledge graphs (TKGs) with minimal supervision. The challenges mainly come from the few-shot and time shift properties of new entities. First, the limited observations associated with them are insufficient for training a model from scratch. Second, the potentially dynamic distributions from the initially observable facts to the future facts ask for explicitly modeling the evolving characteristics of new entities. We correspondingly propose a novel Meta Temporal Knowledge Graph Reasoning (MetaTKGR) framework. Unlike prior work that relies on rigid neighborhood aggregation schemes to enhance low-data entity representation, MetaTKGR dynamically adjusts the strategies of sampling and aggregating neighbors from recent facts for new entities, through temporally supervised signals on future facts as instant feedback. Besides, such a meta temporal reasoning procedure goes beyond existing meta-learning paradigms on static knowledge graphs that fail to handle temporal adaptation with large entity variance. We further provide a theoretical analysis and propose a temporal adaptation regularizer to stabilize the meta temporal reasoning over time. Empirically, extensive experiments on three real-world TKGs demonstrate the superiority of MetaTKGR over state-of-the-art baselines by a large margin.
翻译:在本文中,我们调查了一个现实而未得到充分探讨的问题,即所谓的微小时间知识图推理,其目的是根据变化图中极为有限的观察,预测新兴实体的未来事实,目的是预测新出现实体的未来事实;它提供了应用的实际价值,需要在最低限度的监督之下,在时间知识图(TKGs)中获取关于新实体的即时新知识;挑战主要来自新实体的微小和时间转移特性;首先,与其相关的有限观测结果不足以从零开始对模型进行培训;第二,从最初可观测到的事实到未来事实的潜在动态分布要求明确模拟新实体不断变化的特征;我们相应地提议一个新的MetaTKKGR(MetaTKGR)理论解释框架;不同于以前依靠僵硬的邻里汇总计划来加强低数据实体代表性的工作,MetaTKGGR动态地调整了新实体从最近事实中抽样和集中邻居的战略,通过时间监督的信号,即时反馈;此外,这种元时间推理学程序超出了现有固定知识模型的模型,无法处理实体时间调整的时空比值调整,而实体的时空比值则更大幅度地展示了TKGRMFCR的概率。我们进一步提出了关于MIS基准的定期理论分析。