We propose a low-rank tensor approach to approximate linear transport and nonlinear Vlasov solutions and their associated flow maps. The approach takes advantage of the fact that the differential operators in the Vlasov equation is tensor friendly, based on which we propose a novel way to dynamically and adaptively build up low-rank solution basis by adding new basis functions from discretization of the PDE, and removing basis from an SVD-type truncation procedure. For the discretization, we adopt a high order finite difference spatial discretization and a second order strong stability preserving multi-step time discretization. We apply the same procedure to evolve the dynamics of the flow map in a low-rank fashion, which proves to be advantageous when the flow map enjoys the low rank structure, while the solution suffers from high rank or displays filamentation structures. Hierarchical Tucker decomposition is adopted for high dimensional problems. An extensive set of linear and nonlinear Vlasov test examples are performed to show the high order spatial and temporal convergence of the algorithm with mesh refinement up to SVD-type truncation, the significant computational savings of the proposed low-rank approach especially for high dimensional problems, the improved performance of the flow map approach for solutions with filamentations.


翻译:我们建议对近似线性运输和非线性Vlasov解决方案及其相关流程图采取低调的强压方法,利用Vlasov方程式中的差异操作员对高压友好,在此基础上,我们提出了动态和适应性地建立低级解决方案基础的新办法,办法是从PDE的离散中添加新的基础功能,并去除SVD型脱轨程序的基础。对于离散程序,我们采用了高顺序有限空间离散和第二顺序强的稳定性,以保持多步时间分解。我们采用同样的程序,以低级别方式发展流动图的动态,在流动图拥有低级别结构时,这种程序证明是有利的,而解决方案则有高等级或显示的丝状结构结构。对于高维度问题,采用了高层次的塔克分解法。对高层次和非线性和非线性Vlasov测试实例进行了广泛的组合,以显示在空间和时间上与SVD型分流式分解的网状精细进行高排序的高度空间和时间趋同。我们采用了同样的程序来以低级方式发展流动图的动态动态动态动态,这在高水平的计算方法上与高水平的流流式方法,对于拟议的低层问题特别的改进了。

0
下载
关闭预览

相关内容

【Manning新书】C++并行实战,592页pdf,C++ Concurrency in Action
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
On the recursive structure of multigrid cycles
Arxiv
0+阅读 · 2021年8月17日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员