We study the tolerant testing problem for high-dimensional samplers. Given as input two samplers $\mathcal{P}$ and $\mathcal{Q}$ over the $n$-dimensional space $\{0,1\}^n$, and two parameters $\varepsilon_2 > \varepsilon_1$, the goal of tolerant testing is to test whether the distributions generated by $\mathcal{P}$ and $\mathcal{Q}$ are $\varepsilon_1$-close or $\varepsilon_2$-far. Since exponential lower bounds (in $n$) are known for the problem in the standard sampling model, research has focused on models where one can draw \textit{conditional} samples. Among these models, \textit{subcube conditioning} ($\mathsf{SUBCOND}$), which allows conditioning on arbitrary subcubes of the domain, holds the promise of widespread adoption in practice owing to its ability to capture the natural behavior of samplers in constrained domains. To translate the promise into practice, we need to overcome two crucial roadblocks for tests based on $\mathsf{SUBCOND}$: the prohibitively large number of queries ($\tilde{\mathcal{O}}(n^5/\varepsilon_2^5)$) and limitation to non-tolerant testing (i.e., $\varepsilon_1 = 0$). The primary contribution of this work is to overcome the above challenges: we design a new tolerant testing methodology (i.e., $\varepsilon_1 \geq 0$) that allows us to significantly improve the upper bound to $\tilde{\mathcal{O}}(n^3/(\varepsilon_2-\varepsilon_1)^5)$.
翻译:暂无翻译