Authentication in TLS is predominately carried out with X.509 digital certificates issued by certificate authorities (CA). The centralized nature of current public key infrastructures, however, comes along with severe risks, such as single points of failure and susceptibility to cyber-attacks, potentially undermining the security and trustworthiness of the entire system. With Decentralized Identifiers (DID) alongside distributed ledger technology, it becomes technically feasible to prove ownership of a unique identifier without requiring an attestation of the proof's public key by a centralized and therefore vulnerable CA. This article presents DID Connect, a novel authentication scheme for TLS 1.3 that empowers entities to authenticate in a TLS-compliant way with self-issued X.509 certificates that are equipped with ledger-anchored DIDs instead of CA-issued identifiers. It facilitates the exchange of tamper-proof and 3rd-party attested claims in the form of DID-bound Verifiable Credentials after the TLS handshake to complete the authentication with a full identification of the communication partner. A prototypical implementation shows comparable TLS handshake durations of DID Connect if verification material is cached and reasonable prolongations if it is obtained from a ledger. The significant speed improvement of the resulting TLS channel over a widely used, DID-based alternative transport protocol on the application layer demonstrates the potential of DID Connect to become a viable solution for the establishment of secure and trustful end-to-end communication links with decentrally managed digital identities.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员