Imputing missing potential outcomes using an estimated regression function is a natural idea for estimating causal effects. In the literature, estimators that combine imputation and regression adjustments are believed to be comparable to augmented inverse probability weighting. Accordingly, people for a long time conjectured that such estimators, while avoiding directly constructing the weights, are also doubly robust (Imbens, 2004; Stuart, 2010). Generalizing an earlier result of the authors (Lin et al., 2021), this paper formalizes this conjecture, showing that a large class of regression-adjusted imputation methods are indeed doubly robust for estimating the average treatment effect. In addition, they are provably semiparametrically efficient as long as both the density and regression models are correctly specified. Notable examples of imputation methods covered by our theory include kernel matching, (weighted) nearest neighbor matching, local linear matching, and (honest) random forests.
翻译:使用估计回归函数估计缺失的潜在结果是估计因果关系的一个自然概念。 在文献中,将估算和回归调整相结合的估算者被认为可与增加的反概率加权值相比较。 因此,人们长期以来认为,这种估算者在避免直接构建加权值的同时,也具有双重性(Imbens,2004年;Stuart,2010年)。本文概括了作者早期的结果(Lin等人,2021年),将这一假设正式化,表明大量回归调整估算的估算方法在估计平均处理效果方面确实具有双重性强。此外,只要密度模型和回归模型都得到正确说明,它们就具有半对称效率。我们理论所覆盖的估算方法的显著例子包括内核匹配、(加权)近邻匹配、本地线性匹配和(原始)随机森林。