Policy interventions can spill over to units of a population that are not directly exposed to the policy but are geographically close to the units receiving the intervention. In recent work, investigations of spillover effects on neighboring regions have focused on estimating the average treatment effect of a particular policy in an observed setting. Our research question broadens this scope by asking what policy consequences would the treated units have experienced under hypothetical exposure settings. When we only observe treated unit(s) surrounded by controls -- as is common when a policy intervention is implemented in a single city or state -- this effect inquires about the policy effects under a counterfactual neighborhood policy status that we do not, in actuality, observe. In this work, we extend difference-in-differences (DiD) approaches to spillover settings and develop identification conditions required to evaluate policy effects in counterfactual treatment scenarios. These causal quantities are policy-relevant for designing effective policies for populations subject to various neighborhood statuses. We develop doubly robust estimators and use extensive numerical experiments to examine their performance under heterogeneous spillover effects. We apply our proposed method to investigate the effect of the Philadelphia beverage tax on unit sales.


翻译:我们的研究问题扩大了这一范围,询问在假设的接触环境中,接受治疗的单位会遇到什么样的政策后果。当我们只观察受控制覆盖的治疗单位 -- -- 在一个城市或州实施政策干预时,这种效果很常见 -- -- 探究在反现实的邻里政策状况下的政策效果,而我们实际上并没有观察到这种效果。我们在工作中将差异(DID)办法扩大到外溢环境,并制定评估反实际待遇情景的政策效果所需的条件。这些因果数量与制定针对不同邻里地位人群的有效政策有关。我们开发了强大的估计数据,并使用大量数字实验来检查其在杂交溢出效应下的表现。我们采用拟议方法调查菲州饮料税对单位销售的影响。</s>

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员