Malicious applications (particularly those targeting the Android platform) pose a serious threat to developers and end-users. Numerous research efforts have been devoted to developing effective approaches to defend against Android malware. However, given the explosive growth of Android malware and the continuous advancement of malicious evasion technologies like obfuscation and reflection, Android malware defense approaches based on manual rules or traditional machine learning may not be effective. In recent years, a dominant research field called deep learning (DL), which provides a powerful feature abstraction ability, has demonstrated a compelling and promising performance in a variety of areas, like natural language processing and computer vision. To this end, employing deep learning techniques to thwart Android malware attacks has recently garnered considerable research attention. Yet, no systematic literature review focusing on deep learning approaches for Android Malware defenses exists. In this paper, we conducted a systematic literature review to search and analyze how deep learning approaches have been applied in the context of malware defenses in the Android environment. As a result, a total of 132 studies covering the period 2014-2021 were identified. Our investigation reveals that, while the majority of these sources mainly consider DL-based on Android malware detection, 53 primary studies (40.1 percent) design defense approaches based on other scenarios. This review also discusses research trends, research focuses, challenges, and future research directions in DL-based Android malware defenses.
翻译:恶意应用(特别是针对Android平台的恶意应用)对开发者和终端用户构成了严重威胁。许多研究工作都致力于制定有效方法来防范Android恶意软件。然而,鉴于Android恶意软件的爆炸性增长,以及恶意规避技术的不断发展,例如模糊和反省,基于手工规则或传统机器学习的Android恶意软件防御方法可能不会有效。近年来,一个称为深层次学习(DL)的主导研究领域,提供了强大的特征抽象能力,展示了在诸如自然语言处理和计算机愿景等各个领域的令人信服和充满希望的绩效。为此,利用深层学习技术来挫败Android恶意软件袭击最近引起了相当大的研究关注。然而,没有系统文献审查侧重于深入学习方法的Androd Malmard软件防御技术。在本文中,我们进行了系统的文献审查,以研究和分析在Android环境中的恶意软件保护背景下应用了深层次的学习方法。结果显示,在2014-2021年期间共进行了132项研究。我们的调查显示,尽管这些来源大多以DL-rodrod软件研究为主,但主要以DL-rodrodrouse研究为研究方向,但研究也以Drod-rod-rod-rod-lais-