Malicious applications (particularly those targeting the Android platform) pose a serious threat to developers and end-users. Numerous research efforts have been devoted to developing effective approaches to defend against Android malware. However, given the explosive growth of Android malware and the continuous advancement of malicious evasion technologies like obfuscation and reflection, Android malware defense approaches based on manual rules or traditional machine learning may not be effective. In recent years, a dominant research field called deep learning (DL), which provides a powerful feature abstraction ability, has demonstrated a compelling and promising performance in a variety of areas, like natural language processing and computer vision. To this end, employing deep learning techniques to thwart Android malware attacks has recently garnered considerable research attention. Yet, no systematic literature review focusing on deep learning approaches for Android Malware defenses exists. In this paper, we conducted a systematic literature review to search and analyze how deep learning approaches have been applied in the context of malware defenses in the Android environment. As a result, a total of 132 studies covering the period 2014-2021 were identified. Our investigation reveals that, while the majority of these sources mainly consider DL-based on Android malware detection, 53 primary studies (40.1 percent) design defense approaches based on other scenarios. This review also discusses research trends, research focuses, challenges, and future research directions in DL-based Android malware defenses.


翻译:恶意应用(特别是针对Android平台的恶意应用)对开发者和终端用户构成了严重威胁。许多研究工作都致力于制定有效方法来防范Android恶意软件。然而,鉴于Android恶意软件的爆炸性增长,以及恶意规避技术的不断发展,例如模糊和反省,基于手工规则或传统机器学习的Android恶意软件防御方法可能不会有效。近年来,一个称为深层次学习(DL)的主导研究领域,提供了强大的特征抽象能力,展示了在诸如自然语言处理和计算机愿景等各个领域的令人信服和充满希望的绩效。为此,利用深层学习技术来挫败Android恶意软件袭击最近引起了相当大的研究关注。然而,没有系统文献审查侧重于深入学习方法的Androd Malmard软件防御技术。在本文中,我们进行了系统的文献审查,以研究和分析在Android环境中的恶意软件保护背景下应用了深层次的学习方法。结果显示,在2014-2021年期间共进行了132项研究。我们的调查显示,尽管这些来源大多以DL-rodrod软件研究为主,但主要以DL-rodrodrouse研究为研究方向,但研究也以Drod-rod-rod-rod-lais-

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
20+阅读 · 2020年6月8日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员