Cohn and Umans proposed a framework for developing fast matrix multiplication algorithms based on the embedding computation in certain groups algebras. In subsequent work with Kleinberg and Szegedy, they connected this to the search for combinatorial objects called strong uniquely solvable puzzles (strong USPs). We begin a systematic computer-aided search for these objects. We develop and implement constraint-based algorithms build on reductions to $\mathrm{SAT}$ and $\mathrm{IP}$ to verify that puzzles are strong USPs, and to search for large strong USPs. We produce tight bounds on the maximum size of a strong USP for width $k \le 5$, construct puzzles of small width that are larger than previous work, and improve the upper bounds on strong USP size for $k \le 12$. Although our work only deals with puzzles of small-constant width, the strong USPs we find imply matrix multiplication algorithms that run in $O(n^\omega)$ time with exponent $\omega \le 2.66$. While our algorithms do not beat the fastest algorithms, our work provides evidence and, perhaps, a path to finding families of strong USPs that imply matrix multiplication algorithms that are more efficient than those currently known.
翻译:Cohn 和 Umans 提议了一个基于某些组群代数嵌入计算方法开发快速矩阵乘法的框架。 在随后与 Kleinberg 和 Szegedy 合作的工作中, 他们将此与搜索称为强而独特的可溶解谜题( 强大的 USPs) 的组合对象连接起来。 我们开始系统计算机辅助搜索这些对象。 我们开发和实施基于约束的算法, 其基础为$\ mathrm{ SAT} 美元和$\ mathr{ IP} 美元, 以核实谜题是强大的USPs, 并搜索强大的USPs 。 我们制作了强的USP 最大尺寸的紧限, 用于宽度 $\ le 5 美元, 构建小宽度比以前更大的谜题谜题拼图( USPs) 。 我们的工作只处理小相容宽度的谜题, 我们发现强大的USPs 意味着以 $O ( ONomega) 运行的矩阵的倍增法。 我们的缩略图解 2.66 提供了我们最强的路径中最强的证据。