Eva is a multimodal conversational system that helps users to accomplish their domain goals through collaborative dialogue. The system does this by inferring users' intentions and plans to achieve those goals, detects whether obstacles are present, finds plans to overcome them or to achieve higher-level goals, and plans its actions, including speech acts,to help users accomplish those goals. In doing so, the system maintains and reasons with its own beliefs, goals and intentions, and explicitly reasons about those of its user. Belief reasoning is accomplished with a modal Horn-clause meta-interpreter. The planning and reasoning subsystems obey the principles of persistent goals and intentions, including the formation and decomposition of intentions to perform complex actions, as well as the conditions under which they can be given up. In virtue of its planning process, the system treats its speech acts just like its other actions -- physical acts affect physical states, digital acts affect digital states, and speech acts affect mental and social states. This general approach enables Eva to plan a variety of speech acts including requests, informs, questions, confirmations, recommendations, offers, acceptances, greetings, and emotive expressions. Each of these has a formally specified semantics which is used during the planning and reasoning processes. Because it can keep track of different users' mental states, it can engage in multi-party dialogues. Importantly, Eva can explain its utterances because it has created a plan standing behind each of them. Finally, Eva employs multimodal input and output, driving an avatar that can perceive and employ facial and head movements along with emotive speech acts.


翻译:Eva是一个多式对话系统,它帮助用户通过合作对话实现自己的领域目标。这个系统通过推断用户的意图和计划来达到这些目标,检测是否存在障碍,找到克服障碍或实现更高目标的计划,以及规划其行动,包括言论行为,以帮助用户实现这些目标。在这样做时,这个系统以自己的信仰、目标和意图及其明确的理由来维持和解释自己的信仰、目标和意图来维持和解释自己的用户。信仰推理是通过一个模拟的Horn-clause元解释器来完成的。规划和推理子系统遵守持续目标和意图的原则,包括形成和分解执行复杂行动的意图以及它们可以放弃的条件。由于其规划过程,这个系统对待其言论行为与其他行动一样 -- -- 物理行为影响物理状态,数字行为影响数字状态,言论行为影响心理和社会状态。这个一般方法使Eva能够计划各种言论行为,包括要求、告知、问题、确认、建议、提供、接受、问候和感化意图。这些表达方式的形成和分解,包括进行复杂行动的意向以及意图的形成和分解过程,每一个政党的用户都使用一个正式的货币和货币流程。</s>

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月25日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员