项目名称: 纳颗粒-纳结构复合SERS基底的生化辅助可控制造及性能增强方法研究
项目编号: No.51475468
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 机械、仪表工业
项目作者: 董培涛
作者单位: 中国人民解放军国防科技大学
项目金额: 83万元
中文摘要: 高灵敏、高可靠的生化传感技术在生化战剂防护、重大疾病诊断、环境污染监测、食品安全检测等领域存在迫切需求。表面增强拉曼散射(SERS)是一种极具发展前景的新兴生化传感技术,具有检测灵敏度高、分子特异性好、可实现高通量等优点。但目前的SERS基底存在增强因子较低、均匀性与重复性较差、制备工艺可控性不好等问题。对此,本项目提出了若干种纳颗粒-纳结构复合的高性能SERS基底构型,并基于胱胺、DNA连接等生化辅助工艺方法实现复合基底的可控制备与SERS性能增强。主要研究内容包括:基于时域有限差分算法的复合SERS基底的优化设计与性能增强机理;纳结构与纳颗粒制备的相关微纳基础工艺;基于化学辅助制造工艺的复合SERS基底构筑方法与性能评价;基于生物制造工艺的纳间隙可调复合SERS基底构筑方法与性能评价。项目的研究成果将为我国基于SERS的高灵敏生化传感技术的研究与实际应用提供基础理论和关键技术支撑。
中文关键词: 纳米制造;表面增强拉曼散射;纳米球光刻;纳米颗粒;纳米结构
英文摘要: Biochemistry sensing technology of high sensitivity and high reliability has been widely applied in many areas such as defending biochemistry warfare agents, diagnosing major diseases, monitoring environmental pollution and detecting food safety. Surface-enhanced Raman scattering (SERS) is a very prospective biochemistry sensing technology which has the advantages of high detection sensitivity, high molecular specificity and multiplex detection. However, SERS active substrates have many problems such as limited enhancement factor (EF), bad repeatability and poor controllability of manufacturing process. Therefore, this project proposes some new high-performance nanoparticles-nanostructure composite SERS substrate and realizes the controllable fabrication and performance-enhancing of the substrates based on biochemistry-assisted processes such as crystogen or DNA linking. The research contents are listed as following: firstly, fulfilling the optimal design and mechanism research of the composite SERS substrate based on FDTD method; secondly, accomplishing the research of micro-nano fundamental processes relating to the fabrication of nanostructure and nanoparticles; thirdly, finishing the research of manufacturing method and performance evaluating of the composite SERS substrate based on chemistry-assisted manufacturing processes; lastly, completing the research of manufacturing method and performance evaluating of the composite SERS substrate with adjustable nanogapes based on biology-assisted manufacturing processes. The results will provide new theoretical and key technical support for the research and practical application of high-performance biochemistry sensing technology based on SERS.
英文关键词: Nanofabrication;Surface-enhanced Raman scattering;Nanosphere lithography;Nanoparticles;Nanostructure