The intrinsic biomechanical characteristic of the human upper limb plays a central role in absorbing the interactive energy during physical human-robot interaction (pHRI). We have recently shown that based on the concept of ``Excess of Passivity (EoP)," from nonlinear control theory, it is possible to decode such energetic behavior for both upper and lower limbs. The extracted knowledge can be used in the design of controllers for optimizing the transparency and fidelity of force fields in human-robot interaction and in haptic systems. In this paper, for the first time, we investigate the frequency behavior of the passivity map for the upper limb when the muscle co-activation was controlled in real-time through visual electromyographic feedback. Five healthy subjects (age: 27 +/- 5) were included in this study. The energetic behavior was evaluated at two stimulation frequencies at eight interaction directions over two controlled muscle co-activation levels. Electromyography (EMG) was captured using the Delsys Wireless Trigno system. Results showed a correlation between EMG and EoP, which was further altered by increasing the frequency. The proposed energetic behavior is named the Geometric MyoPassivity (GMP) map. The findings indicate that the GMP map has the potential to be used in real-time to quantify the absorbable energy, thus passivity margin of stability for upper limb interaction during pHRI.


翻译:人体上肢固有的生物机能特征在吸收人体-机器人物理互动期间的互动能量(pHRI)方面发挥了核心作用。我们最近从非线性控制理论中显示,根据“被动性过量(EoP)”的概念,从非线性控制理论中可以解码上肢和下肢的这种能动行为。提取的知识可用于设计控制器,优化人体-机器人相互作用中和机能系统中的力量场的透明度和忠诚性。在本文中,我们首次调查了在通过视觉电感学反馈实时控制肌肉共活性(EoP)时,上肢被动性图的频率行为。本研究包括了五个健康科目(年龄:27+/-5),在两个受控肌肉共活性水平上的两个振动频率上评价了强性。电感学(EMG)利用Delsysyles Wiressles Trigno系统采集了。结果显示EMG和EoP的被动性图的频率变化,在GMRVS中,用真实的频率显示的是磁感应变。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月23日
Arxiv
0+阅读 · 2023年3月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员