With the rapid growth in mobile computing, massive amounts of data and computing resources are now located at the edge. To this end, Federated learning (FL) is becoming a widely adopted distributed machine learning (ML) paradigm, which aims to harness this expanding skewed data locally in order to develop rich and informative models. In centralized FL, a collection of devices collaboratively solve a ML task under the coordination of a central server. However, existing FL frameworks make an over-simplistic assumption about network connectivity and ignore the communication bandwidth of the different links in the network. In this paper, we present and study a novel FL algorithm, in which devices mostly collaborate with other devices in a pairwise manner. Our nonparametric approach is able to exploit network topology to reduce communication bottlenecks. We evaluate our approach on various FL benchmarks and demonstrate that our method achieves 10X better communication efficiency and around 8% increase in accuracy compared to the centralized approach.


翻译:随着移动计算机的快速增长,大量数据和计算资源现在处于边缘。为此,联邦学习(FL)正在成为一个广泛采用的分布式机器学习模式,其目的是在当地利用这一不断扩大的扭曲数据,以开发丰富和丰富的信息模型。在中央FL,一个设备集在中央服务器的协调下合作解决ML任务。然而,现有的FL框架对网络连通性作出了过于简单化的假设,忽视了网络中不同链接的通信带宽。在本文中,我们介绍并研究了一个新的FL算法,其中设备大多以对称方式与其他设备合作。我们的非对称方法能够利用网络表层来减少通信瓶颈。我们评估了各种FL基准的方法,并表明我们的方法实现了10X更好的通信效率,比集中方法增加了大约8%的准确度。

0
下载
关闭预览

相关内容

联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高效率的机器学习。其中,联邦学习可使用的机器学习算法不局限于神经网络,还包括随机森林等重要算法。联邦学习有望成为下一代人工智能协同算法和协作网络的基础。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
10+阅读 · 2021年3月30日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关资讯
Federated Learning: 架构
AINLP
4+阅读 · 2020年9月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员