Linear complementary dual codes (LCD codes) are codes whose intersections with their dual codes are trivial. These codes were introduced by Massey in 1992. LCD codes have wide applications in data storage, communication systems, and cryptography. Niederreiter-Rosenbloom-Tsfasman LCD codes (NRT-LCD codes) were introduced by Heqian, Guangku and Wei as a generalization of LCD codes for the NRT metric space $M_{n,s}(\mathbb{F}_{q})$. In this paper, we study LCD$[n\times s,k]$, the maximum minimum NRT distance among all binary $[n\times s,k]$ NRT-LCD codes. We prove the existence (non-existence) of binary maximum distance separable NRT-LCD codes in $M_{1,s}(\mathbb{F}_{2})$. We present a linear programming bound for binary NRT-LCD codes in $M_{n,2}(\mathbb{F}_{2})$. We also give two methods to construct binary NRT-LCD codes.
翻译:线性补充双重代码(LCD代码)是与其双重代码交错的代码。这些代码由Massey于1992年引入。这些代码在数据存储、通信系统和加密方面有着广泛的应用。涅德雷特-Rosenbloom-Tsfasman LCD代码(NRT-LCD代码)由Heqian、Guangku和Wei引入,作为NRT 空间 $M ⁇ n,s}(\mathbb{F ⁇ q}) 的LCD代码的概括化。在本文中,我们研究了LCD$[n\times s,k] 在所有二进制($[n\times s,k] $ NRT-LCD代码中的最大NRT距离。我们证明在$M1,s}(\mathbb{F}2}$中存在(不存在)二进最大距离的NRT-LCD代码。我们用双向 $M ⁇,2}(mathbb{F ⁇ 2}(W) 提供两种方法。