We propose a novel scheme to use the Levenshtein Transformer to perform the task of word-level quality estimation. A Levenshtein Transformer is a natural fit for this task: trained to perform decoding in an iterative manner, a Levenshtein Transformer can learn to post-edit without explicit supervision. To further minimize the mismatch between the translation task and the word-level QE task, we propose a two-stage transfer learning procedure on both augmented data and human post-editing data. We also propose heuristics to construct reference labels that are compatible with subword-level finetuning and inference. Results on WMT 2020 QE shared task dataset show that our proposed method has superior data efficiency under the data-constrained setting and competitive performance under the unconstrained setting.
翻译:我们提出了一个新的计划,用Levenshtein变换器来完成字级质量估计任务。一个Levenshtein变换器自然适合这一任务:经过训练以迭代方式解码,一个Levenshtein变换器可以在没有明确监督的情况下学会编辑后的工作。为了进一步减少翻译任务与字级QE任务之间的不匹配,我们建议了两个阶段的转移学习程序,既包括增强的数据,也包括人文编辑后的数据。我们还建议了建立与子字级微调和推论相兼容的参考标签。 WMT 2020 QE 共享任务数据集的结果表明,在数据限制的环境下,我们拟议的方法具有更高的数据效率,在不受限制的环境中,有竞争力。