Large Audio-Language Models (LALMs) are becoming essential as a powerful multimodal backbone for real-world applications. However, recent studies show that audio inputs can more easily elicit harmful responses than text, exposing new risks toward deployment. While safety alignment has made initial advances in LLMs and Large Vision-Language Models (LVLMs), we find that vanilla adaptation of these approaches to LALMs faces two key limitations: 1) LLM-based steering fails under audio input due to the large distributional gap between activations, and 2) prompt-based defenses induce over-refusals on benign-speech queries. To address these challenges, we propose Safe-Ablated Refusal Steering (SARSteer), the first inference-time defense framework for LALMs. Specifically, SARSteer leverages text-derived refusal steering to enforce rejection without manipulating audio inputs and introduces decomposed safe-space ablation to mitigate over-refusal. Extensive experiments demonstrate that SARSteer significantly improves harmful-query refusal while preserving benign responses, establishing a principled step toward safety alignment in LALMs.


翻译:大型音频语言模型(LALMs)正成为现实应用中强大的多模态骨干。然而,近期研究表明,相较于文本,音频输入更容易引发有害响应,从而暴露出新的部署风险。尽管安全对齐技术已在大型语言模型(LLMs)和大型视觉语言模型(LVLMs)中取得初步进展,但我们发现将这些方法直接迁移至LALMs面临两个关键局限:1)基于LLM的导向机制因激活分布差异过大而在音频输入下失效;2)基于提示的防御机制会在良性语音查询上引发过度拒绝。为应对这些挑战,我们提出了安全消融拒绝导向(SARSteer),这是首个面向LALMs的推理时防御框架。具体而言,SARSteer利用文本衍生的拒绝导向机制实现拒绝响应而无需操控音频输入,并引入解构化安全空间消融以缓解过度拒绝问题。大量实验表明,SARSteer在保持良性响应能力的同时,显著提升了对有害查询的拒绝效能,为LALMs的安全对齐奠定了理论基础。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2024年3月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员