We consider error-correction coding schemes for adversarial wiretap channels (AWTCs) in which the channel can a) read a fraction of the codeword bits up to a bound $r$ and b) flip a fraction of the bits up to a bound $p$. The channel can freely choose the locations of the bit reads and bit flips via a process with unbounded computational power. Codes for the AWTC are of broad interest in the area of information security, as they can provide data resiliency in settings where an attacker has limited access to a storage or transmission medium. We investigate a family of non-linear codes known as pseudolinear codes, which were first proposed by Guruswami and Indyk (FOCS 2001) for constructing list-decodable codes independent of the AWTC setting. Unlike general non-linear codes, pseudolinear codes admit efficient encoders and have succinct representations. We focus on unique decoding and show that random pseudolinear codes can achieve rates up to the binary symmetric channel (BSC) capacity $1-H_2(p)$ for any $p,r$ in the less noisy region: $p<1/2$ and $r<1-H_2(p)$ where $H_2(\cdot)$ is the binary entropy function. Thus, pseudolinear codes are the first known optimal-rate binary code family for the less noisy AWTC that admit efficient encoders. The above result can be viewed as a derandomization result of random general codes in the AWTC setting, which in turn opens new avenues for applying derandomization techniques to randomized constructions of AWTC codes. Our proof applies a novel concentration inequality for sums of random variables with limited independence which may be of interest as an analysis tool more generally.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员