A key challenge in federated learning (FL) is the statistical heterogeneity that impairs the generalization of the global model on each client. To address this, we propose a method Federated learning with Adaptive Local Aggregation (FedALA) by capturing the desired information in the global model for client models in personalized FL. The key component of FedALA is an Adaptive Local Aggregation (ALA) module, which can adaptively aggregate the downloaded global model and local model towards the local objective on each client to initialize the local model before training in each iteration. To evaluate the effectiveness of FedALA, we conduct extensive experiments with five benchmark datasets in computer vision and natural language processing domains. FedALA outperforms eleven state-of-the-art baselines by up to 3.27% in test accuracy. Furthermore, we also apply ALA module to other federated learning methods and achieve up to 24.19% improvement in test accuracy.
翻译:联合会学习(FL)中的一个关键挑战是,统计差异性妨碍全球模式对每个客户的普及。为了解决这个问题,我们建议采用一种方法,即通过在个人化FL中捕捉全球客户模式模式中所需的信息,与适应性地方聚合(FedALA)学习(FedALA)。 FedALA的关键组成部分是适应性地方聚合(ALA)模块,该模块可以适应性地将下载的全球模型和地方模型集中起来,以实现每个客户在每次循环培训前初始化当地模型的当地目标。为了评估FedALA的有效性,我们用计算机视觉和自然语言处理领域的五个基准数据集进行广泛的实验。FedALA在测试精度方面比11个最先进的基线高出3.27%。此外,我们还将ALA模块应用于其他节化学习方法,并在测试精度方面实现高达24.19%的改进。