Neural network based approaches to automated story plot generation attempt to learn how to generate novel plots from a corpus of natural language plot summaries. Prior work has shown that a semantic abstraction of sentences called events improves neural plot generation and and allows one to decompose the problem into: (1) the generation of a sequence of events (event-to-event) and (2) the transformation of these events into natural language sentences (event-to-sentence). However, typical neural language generation approaches to event-to-sentence can ignore the event details and produce grammatically-correct but semantically-unrelated sentences. We present an ensemble-based model that generates natural language guided by events.We provide results---including a human subjects study---for a full end-to-end automated story generation system showing that our method generates more coherent and plausible stories than baseline approaches.


翻译:以神经网络为基础的自动故事生成方法试图学习如何从一系列自然语言情节摘要中生成新剧本。先前的工作表明,用语义抽象的句子称为事件,可以改善神经情节生成,并使人们可以将问题分解为:(1) 产生一系列事件(活动到活动),(2) 将这些事件转化为自然语言句(事件到判决),然而,典型的神经语言生成方法可以忽略事件细节,产生语法正确但与语法无关的句子。我们展示了一个基于共同语言的模型,在事件指导下生成自然语言。我们提供了成果-包括人类主题研究,用于一个完整的终端到终端自动故事生成系统,表明我们的方法比基线方法产生更加连贯和可信的故事。

3
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年9月26日
Arxiv
3+阅读 · 2018年3月2日
Arxiv
7+阅读 · 2018年1月30日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员