Clustering is a popular unsupervised learning tool often used to discover groups within a larger population such as customer segments, or patient subtypes. However, despite its use as a tool for subgroup discovery and description - few state-of-the-art algorithms provide any rationale or description behind the clusters found. We propose a novel approach for interpretable clustering that both clusters data points and constructs polytopes around the discovered clusters to explain them. Our framework allows for additional constraints on the polytopes - including ensuring that the hyperplanes constructing the polytope are axis-parallel or sparse with integer coefficients. We formulate the problem of constructing clusters via polytopes as a Mixed-Integer Non-Linear Program (MINLP). To solve our formulation we propose a two phase approach where we first initialize clusters and polytopes using alternating minimization, and then use coordinate descent to boost clustering performance. We benchmark our approach on a suite of synthetic and real world clustering problems, where our algorithm outperforms state of the art interpretable and non-interpretable clustering algorithms.
翻译:集群是一种流行的、不受监督的学习工具,通常用来在较大人群中发现群体,如客户部分或病人子类型。然而,尽管它被用作分组发现和描述的工具,但很少有最先进的算法在所发现集群背后提供任何理由或描述。我们建议了一种新颖的可解释的组合方法,即集群数据点和在所发现集群周围建造多面形以解释它们。我们的框架允许对多面体施加额外的限制,包括确保建造多面体的超平面机是轴平行的,或以微量系数稀释。我们把通过多面体构建集群的问题作为混合与非激光组合法(MINLP)一起提出。为了解决我们的表述,我们提出了一种两种阶段方法,即我们首先使用交替最小化的方式初始化集群和多面形体,然后使用协调的下降来提高集群的性能。我们把我们的方法以合成和真实的世界集群问题组合为基准,在那里我们的算法比艺术可解释和不相交错的组合算法的状态。