Petroni et al. (2019) demonstrated that it is possible to retrieve world facts from a pre-trained language model by expressing them as cloze-style prompts and interpret the model's prediction accuracy as a lower bound on the amount of factual information it encodes. Subsequent work has attempted to tighten the estimate by searching for better prompts, using a disjoint set of facts as training data. In this work, we make two complementary contributions to better understand these factual probing techniques. First, we propose OptiPrompt, a novel and efficient method which directly optimizes in continuous embedding space. We find this simple method is able to predict an additional 6.4% of facts in the LAMA benchmark. Second, we raise a more important question: Can we really interpret these probing results as a lower bound? Is it possible that these prompt-search methods learn from the training data too? We find, somewhat surprisingly, that the training data used by these methods contains certain regularities of the underlying fact distribution, and all the existing prompt methods, including ours, are able to exploit them for better fact prediction. We conduct a set of control experiments to disentangle "learning" from "learning to recall", providing a more detailed picture of what different prompts can reveal about pre-trained language models.
 翻译:Petroni等人(2019年)表明,有可能从经过事先培训的语言模型中从一个经过培训的语言模型中获取世界事实(2019年),用凝胶式的提示来表达这些事实,并将模型的预测准确性解释为其编码中的事实信息量的较低约束值。随后的工作试图通过寻找更好的提示来收紧估计,使用一套不连贯的事实数据作为培训数据。在这项工作中,我们作出了两个互补贡献,以更好地了解这些事实探测技术。首先,我们提出了OptiPrompt,这是一种创新和有效的方法,直接优化了连续嵌入空间。我们发现这一简单方法能够预测LAMA基准中更多的6.4%的事实。第二,我们提出了一个更重要的问题:我们能否真正将这些检验结果解释为较低约束度?这些迅速研究方法能否也从培训数据中吸取教训?我们感到有些奇怪的是,这些方法所使用的培训数据含有某些基本事实分布的规律性,而所有现有的迅速方法,包括我们的方法都能够利用这些方法进行更好的事实预测。我们进行了一套控制实验,以便从“更精确地学习”的模型中解析。