Motivation: Many high-performance DTA models have been proposed, but they are mostly black-box and thus lack human interpretability. Explainable AI (XAI) can make DTA models more trustworthy, and can also enable scientists to distill biological knowledge from the models. Counterfactual explanation is one popular approach to explaining the behaviour of a deep neural network, which works by systematically answering the question "How would the model output change if the inputs were changed in this way?". Most counterfactual explanation methods only operate on single input data. It remains an open problem how to extend counterfactual-based XAI methods to DTA models, which have two inputs, one for drug and one for target, that also happen to be discrete in nature. Methods: We propose a multi-agent reinforcement learning framework, Multi-Agent Counterfactual Drug target binding Affinity (MACDA), to generate counterfactual explanations for the drug-protein complex. Our proposed framework provides human-interpretable counterfactual instances while optimizing both the input drug and target for counterfactual generation at the same time. Results: We benchmark the proposed MACDA framework using the Davis dataset and find that our framework produces more parsimonious explanations with no loss in explanation validity, as measured by encoding similarity and QED. We then present a case study involving ABL1 and Nilotinib to demonstrate how MACDA can explain the behaviour of a DTA model in the underlying substructure interaction between inputs in its prediction, revealing mechanisms that align with prior domain knowledge.
翻译:激励:许多高性能DTA模型已经提出,但大多是黑箱,因此缺乏人的解释性。可以解释的AI(XAI)模型可以使DTA模型更加可信,还可以使科学家从模型中蒸馏生物知识。反事实解释是一种解释深神经网络行为的流行方法,通过系统回答问题“如果投入以这种方式改变,模型产出变化将如何进行?” 。大多数反事实解释方法只能在单一输入数据上运作。它仍然是一个开放的问题,如何将反事实的XAI方法推广到DTA模型,这些模型有两个投入,一个用于药物,一个用于目标,这些投入在性质上也会不相干。方法:我们提议了一个多剂强化学习框架,多剂反实际药物目标结合的亲近性(MACDA),为药物综合体提供了反事实解释。我们提议的框架提供了人与结构的反事实实例,同时将输入的药物和目标优化为反事实生成。结果:我们用一个比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、解释性的解释性的解释性、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较的、比较