Constrained Markov Decision Processes (CMDPs) are one of the common ways to model safe reinforcement learning problems, where constraint functions model the safety objectives. Lagrangian-based dual or primal-dual algorithms provide efficient methods for learning in CMDPs. For these algorithms, the currently known regret bounds in the finite-horizon setting allow for a "cancellation of errors"; one can compensate for a constraint violation in one episode with a strict constraint satisfaction in another. However, we do not consider such a behavior safe in practical applications. In this paper, we overcome this weakness by proposing a novel model-based dual algorithm OptAug-CMDP for tabular finite-horizon CMDPs. Our algorithm is motivated by the augmented Lagrangian method and can be performed efficiently. We show that during $K$ episodes of exploring the CMDP, our algorithm obtains a regret of $\tilde{O}(\sqrt{K})$ for both the objective and the constraint violation. Unlike existing Lagrangian approaches, our algorithm achieves this regret without the need for the cancellation of errors.
翻译:暂无翻译