The densest subgraph problem has received significant attention, both in theory and in practice, due to its applications in problems such as community detection, social network analysis, and spam detection. Due to the high cost of obtaining exact solutions, much attention has focused on designing approximate densest subgraph algorithms. However, existing approaches are not able to scale to massive graphs with billions of edges. In this paper, we introduce a new framework that combines approximate densest subgraph algorithms with a pruning optimization. We design new parallel variants of the state-of-the-art sequential Greedy++ algorithm, and plug it into our framework in conjunction with a parallel pruning technique based on $k$-core decomposition to obtain parallel $(1+\varepsilon)$-approximate densest subgraph algorithms. On a single thread, our algorithms achieve $2.6$--$34\times$ speedup over Greedy++, and obtain up to $22.37\times$ self relative parallel speedup on a 30-core machine with two-way hyper-threading. Compared with the state-of-the-art parallel algorithm by Harb et al. [NeurIPS'22], we achieve up to a $114\times$ speedup on the same machine. Finally, against the recent sequential algorithm of Xu et al. [PACMMOD'23], we achieve up to a $25.9\times$ speedup. The scalability of our algorithms enables us to obtain near-optimal density statistics on the hyperlink2012 (with roughly 113 billion edges) and clueweb (with roughly 37 billion edges) graphs for the first time in the literature.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员