Background: The learning of genotype-phenotype associations and history of human disease by doing detailed and precise analysis of phenotypic abnormalities can be defined as deep phenotyping. To understand and detect this interaction between phenotype and genotype is a fundamental step when translating precision medicine to clinical practice. The recent advances in the field of machine learning is efficient to predict these interactions between abnormal human phenotypes and genes. Methods: In this study, we developed a framework to predict links between human phenotype ontology (HPO) and genes. The annotation data from the heterogeneous knowledge resources i.e., orphanet, is used to parse human phenotype-gene associations. To generate the embeddings for the nodes (HPO & genes), an algorithm called node2vec was used. It performs node sampling on this graph based on random walks, then learns features over these sampled nodes to generate embeddings. These embeddings were used to perform the downstream task to predict the presence of the link between these nodes using 5 different supervised machine learning algorithms. Results: The downstream link prediction task shows that the Gradient Boosting Decision Tree based model (LightGBM) achieved an optimal AUROC 0.904 and AUCPR 0.784. In addition, LightGBM achieved an optimal weighted F1 score of 0.87. Compared to the other 4 methods LightGBM is able to find more accurate interaction/link between human phenotype & gene pairs.


翻译:在将精密医学转化为临床实践时,要理解和检测苯型和基因型之间的这种互动是一个重要的步骤。在机器学习领域最近的进展对于预测非正常人类苯型和基因之间的相互作用是有效的。方法:在本研究中,我们开发了一个框架,通过对胎儿型肿瘤学和基因进行详细和精确的分析,预测人类疾病的历史。来自混杂知识资源(e.)的注解数据被定义为深层口味。为了理解和检测苯型和基因型之间的这种相互作用,在将精密医学转化为临床实践实践时,使用一种叫做 node2vec 的算法来生成节点。根据随机行道对这个图进行节点取样,然后学习这些抽样节点的特征来生成嵌入。这些嵌入式用于执行下游任务,以预测这些混杂知识资源(e.e.oorganet) 的精确互动数据用于分析人类苯型和基因型之间的关联。 使用5种不同的监督性G 机头BL 算算法显示一个最优的模型和BR 。

0
下载
关闭预览

相关内容

网络中的链路预测(Link Prediction)是指如何通过已知的网络节点以及网络结构等信息预测网络中尚未产生连边的两个节点之间产生链接的可能性。这种预测既包含了对未知链接(exist yet unknown links)的预测也包含了对未来链接(future links)的预测。该问题的研究在理论和应用两个方面都具有重要的意义和价值 。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Link prediction | 三篇SEAL相关工作小结
AINLP
47+阅读 · 2020年11月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Type-augmented Relation Prediction in Knowledge Graphs
Inductive Relation Prediction by Subgraph Reasoning
Arxiv
11+阅读 · 2020年2月12日
Arxiv
9+阅读 · 2018年10月18日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Link prediction | 三篇SEAL相关工作小结
AINLP
47+阅读 · 2020年11月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员